Towards Automatic Personalised Content Creation in Racing Games


Evolutionary algorithms are commonly used to create high-performing strategies or agents for computer games. In this paper, we instead choose to evolve the racing tracks in a car racing game. An evolvable track representation is devised, and a multiobjective evolutionary algorithm maximises the entertainment value of the track relative to a particular human player. This requires a way to create accurate models of players’ driving styles, as well as a tentative definition of when a racing track is fun, both of which are provided. We believe this approach opens up interesting new research questions and is potentially applicable to commercial racing games.

Download Link

Download as PDF

PCG Wiki References

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License